Decentralized Global Optimization Based on a Growth Transform Dynamical System Model
نویسندگان
چکیده
منابع مشابه
mortality forecasting based on lee-carter model
over the past decades a number of approaches have been applied for forecasting mortality. in 1992, a new method for long-run forecast of the level and age pattern of mortality was published by lee and carter. this method was welcomed by many authors so it was extended through a wider class of generalized, parametric and nonlinear model. this model represents one of the most influential recent d...
15 صفحه اولDecentralized Fuzzy-PID Based Control Model for a Multivariable Liquid Level System
Multivariable liquid level control is essential in process industries to ensure quality of the product and safety of the equipment. However, the significant problems of the control system include excessive time consumption and percentage overshoot, which result from ineffective performance of the tuning methods of the PID controllers used for the system. In this paper, fuzzy logic was used to t...
متن کاملGlobal dynamical model of the cardiovascular system
Blood system functions are very diverse and important for most processes in human organism. One of its primary functions is matter transport among different parts of the organism including tissue supplying with oxygen, carbon dioxide excretion, drug propagation etc. Forecasting of these processes under normal conditions and in the presence of different pathologies like atherosclerosis, loss of ...
متن کاملGlobal Optimization using a Dynamical Systems Approach
We develop new algorithms for global optimization by combining well known branch and bound methods with multilevel subdivision techniques for the computation of invariant sets of dynamical systems. The basic idea is to view iteration schemes for local optimization problems — e.g. Newton’s method or conjugate gradient methods — as dynamical systems and to compute set coverings of their fixed poi...
متن کاملPrivacy-preserving Decentralized Optimization Based on ADMM
In this paper, we address the problem of privacypreservation in decentralized optimization, where N agents cooperatively minimize an objective function that is the sum of N strongly convex functions private to these individual agents. In most existing decentralized optimization approaches, participating agents exchange and disclose estimates explicitly, which may not be desirable when the estim...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Neural Networks and Learning Systems
سال: 2018
ISSN: 2162-237X,2162-2388
DOI: 10.1109/tnnls.2018.2817367